The Management School, University of Lancaster

The third edition of this popular book emphasizes the role of modelling in the computer simulation methods used in management science. Readers will find a thorough coverage of the modelling, computing and statistical aspects of discrete simulation and system dynamics.

- Part I is a general introduction to the simulation methods commonly used in management science. Part II gives a detailed exposition of discrete event simulation, and Part III provides a description of the methods of system dynamics as an approach to policy modelling within organizations.

This book is based on modern computing methods and assumes the use of personal computers and workstations. It includes coverage of visual interactive simulation and modelling and takes the view that contemporary software and hardware allow rapid model development.

Computer Simulation in Management Science shows why computer simulation models are popular and gives full instruction on their construction and use. A book which will appeal to students, teachers and practitioners of management science, computing, engineering and business.

- Updated to reflect changes in computing methods.
- Emphasizes the methods needed to develop valid working simulations.
- Includes example programs in Turbo Pascal, SIMSCRIPT and GPSS.

CONTENTS

Preface to third edition xvi

PART I FUNDAMENTALS OF COMPUTER SIMULATION IN MANAGEMENT SCIENCE 1

1 The computer simulation approach 3
 1.1 Models, experiments and computers 3
 1.2 Models in management science 4
 1.3 Simulation as experimentation 5
 1.4 Why simulate? 7
 1.4.1 Simulation versus direct expérimentation 7
 1.4.2 Simulation versus mathematical modelling 8
 1.5 Key phases in computer simulation 8
 1.5.1 Simulation modelling 9
 1.5.2 Computing 10
1.5.3 Experimentation

1.6 A summary
Exercises
References

2 A variety of modelling approaches

2.1 General considerations
2.2 Time handling
 2.2.1 Time slicing
 2.2.2 Next-event technique
 2.2.3 Time slicing or next event?
2.3 Stochastic or deterministic?
 2.3.1 Deterministic simulation: a time-slicing example
 2.3.2 Stochastic simulation
2.4 Discrete or continuous change?
 2.4.1 Discrete change
 2.4.2 Continuous change
 2.4.3 Mixed discrete continuous change
Exercises
References

PART II DISCRETE EVENT SIMULATION

3 Discrete event modelling
 3.1 Fundamentals
 3.2 Terminology
 3.2.1 Objects of the system
 3.2.2 Operations of the entities
 3.3 Activity cycle diagrams
 3.3.1 Example 1: a simple job shop
 3.3.2 Example 2: the harassed booking clerk
 3.3.3 Example 3: the delivery depot
 3.3.4 Using the activity cycle diagram
 3.4 Activity cycle diagrams: a caveat
Exercises
References

4 Event, activity and process approaches to modelling

 4.1 General ideas
 4.1.1 A three-level hierarchy
 4.2 The event approach
 4.2.1 An event-based executive
 4.2.2 The harassed booking clerk: an event-based model
 4.2.3 The event approach: a summary
 4.3 The activity approach
 4.3.1 An activity-based executive
 4.3.2 The harassed booking clerk: an activity-based model
 4.3.3 Activity- vers us event-based approaches
 4.4 The process interaction approach
 4.4.1 A process-based executive
 4.4.2 The harassed booking clerk: a process-based approach
 4.5 A comparison of these approaches
Exercises
References

5 The three-phase approach

 5.1 'B' and 'C' activities
 5.1.1 Bs and Cs defined
 5.1.2 The simple queuing example
 5.1.3 The harassed booking clerk
 5.2 A simple road junction
 5.3 A general rule for states, Bs and Cs
 5.4 A description of a simple three-phase executive
 5.4.1 Inside a three-phase executive
 5.4.2 Inside other executives
Exercises
References
11.4.4 SIMULA
11.4.5 Pros and cons of simulation programming languages 178
11.5 Flow diagram systems 178
11.5.1 HOCUS 179
11.5.2 GPSS 180
11.6 Program generators 183
11.6.1 CAPS 184
11.6.2 General features of program generators 185
11.7 Visual interactive simulation systems 186
11.8 Visual interactive modelling systems 187
11.8.1 XCell+ 187
11.8.2 Using visual interactive modelling systems 190
References 191

12 Sampling methods 193
12.1 Random samples 193
12.2 General principles of random sampling 193
12.3 Generating random numbers 195
12.3.1 Truly random generators 195
12.3.2 Pseudo-random numbers 196
12.3.3 Multiplicative congruential generators 198
12.3.4 Mixed congruential generators 199
12.4 Testing random number generators 200
12.4.1 Scatter plots 201
12.4.2 Frequency tests 203
12.4.3 Serial test 203
12.4.4 Gap test 203
12.4.5 Poker test 204
12.4.6 Other tests 204
12.5 General methods for sampling from continuous distributions 204
12.5.1 Inversion 205
12.5.2 Rejection 206
12.5.3 Composition 207
12.6 The Normal distribution 208
12.6.1 Box-Müller method 208
12.6.2 Box-Müller polar method 209
12.6.3 Composition 209
12.6.4 Via the central limit theorem 210
12.7 Sampling from discrete distributions 211
12.7.1 Implicit inverse transformation 211
12.7.2 Geometric distribution 211
12.7.3 Poisson distribution 212
12.7.4 Binomial distribution 213
Exercises 213
References 214

13 Planning and interpreting discrete simulations 217
13.1 Basic ideas 217
13.1.1 Estimation and comparison 218
13.1.2 Steady state and transience 220
13.1.3 Terminating and non-terminating systems 221
13.2 Lack of independence 221
13.2.1 Simple replication 221
13.2.2 Batching 222
13.2.3 Regenerative methods 222
13.3 Achieving steady state 222
13.3.1 Using a run-in period 223
13.3.2 Using typical starting conditions 224
13.4 Variance reduction 225
13.4.1 An overview 225
13.4.2 Sampling variation 225
13.4.3 Common random numbers 227
13.4.4 Control variates 229
13.4.5 Antithetic variates 230
13.4.6 Selective and descriptive sampling 231
13.5 Experimentation 233
PART III SYSTEM DYNAMICS

14 Modelling feedback systems

14.1 Feedback systems
14.1.1 Hierarchical feedback systems: an example
14.1.2 Causal loop diagrams
14.1.3 Closed and open loops
14.2 Analysing feedback systems
14.2.1 Level of detail
14.2.2 Simulating feedback systems
14.3 System dynamics modelling
14.3.1 Delays
14.3.2 Levels
14.3.3 Rates
14.3.4 Policies
14.4 The origins of system dynamics

References

15 System dynamics simulation

15.1 Influence diagrams
15.2 System dynamics models
15.2.1 Time handling
15.2.2 Level equations
15.2.3 Rate equations
15.2.4 Other equation types
15.3 Modelling delays
15.3.1 First-order exponential delays
15.3.2 Third-order exponential delays
15.3.3 Pipeline delays
15.3.4 Incorporating delays into models
15.4 Information smoothing
15.4.1 Material delays
15.4.2 Information delays
15.5 Choosing a suitable value for DT
15.6 Computer software for system dynamics
15.6.1 Use a general-purpose programming language
15.6.2 Use a spreadsheet
15.6.3 Specialist system dynamics software

Exercises

References

16 System dynamics in practice

16.1 Associated Spares Ltd
16.1.1 The problem as originally posed
16.1.2 The multi-echelon system
16.1.3 The retail branch model
16.1.4 The regional warehouse model
16.1.5 The central warehouse model
16.1.6 The total system model
16.1.7 Some conclusions
16.1.8 A postscript

16.2 Dynastat Ltd
16.2.1 An expansion programme
16.2.2 The manpower problem
16.2.3 Recruitment
16.2.4 Turnover
16.2.5 Some effects of this structure
16.2.6 Validating the model

References
16.2.7 Simulation results 285
16.2.8 Predicting length of service 287
16.2.9 The value of the exercise to Dynastat 287
16.3 System dynamics in practice 288
16.3.1 Simple models 288
16.3.2 Communication 289
16.3.3 New thinking 289
16.3.4 Evolutionary involvement 290

Reference 290

Appendix 1 Listing of the Turbo Pascal units for the simple harassed booking clerk Simulation 291
Appendix 2 Listing of the Turbo Pascal units for the enhanced harassed booking clerk Simulation 311
Appendix 3 Listing of the Turbo Pascal units for the interactive graphical harassed booking clerk simulation 327

Author index 345

Subject index 347

TOP